
Cmputer. Science:4

'U ICausality- Preserving Timestamps

* ~ Iin Distributed Programs

IAdam Beguelin Erik Seligman

* June 1993

I ~CMU-CS-93- 167

1.

1. TXT-T

~ ~ '~' ~93-17757

~ UNI2N

Causality- Preserving Timestamps
in Distributed Programs

Adam Beguelin Erik Seligman

June 1993
CMU-CS-93-167

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

'This research was sponsored in part by the Defense Advanced R,,sr chl Projoct.s
Agency, Information Science and Technology Office, under the title "Researcih on Parallel
Computing", ARPA Order No. 7330, issued by DARlIA/CMO under Contracct M l)A972-
90-C-0035. Support was also provided by a Nationai Science Foundation gr-dulate fellow-
ship awarded to Erik Seligman.

The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the U.S. Government,

K~eywvords: Dist ri biu tefd.paral Ic! .t i mestamn psilogica I t inlst a1111 ps.sliper-coll)t)I lIi ii ck

monitoring,deh!bigging. tac-hvon,catisaIi tvý

Abstract

A tachyon is an improperly ordered event in a distributed program. Tachvonis
are most often manifested as messages which are received before they are
sent, violating the principle of causality. Although tachvons are not possible
in "real life", they may appear to occur in distributed parallel program t races
due to coarse clock granularity or poor clock synchronization. In this paper.
we establish that tachyons do in fact. occur commonly in distributed pro-
grams on our Ethernet at Carnegie Mellon University. and we disc'ss some

ways of eliminating them from program traces while preserving at least some
knowledge of the length of time intervals in our programs. Our methods are
based on Lamport-style clock corrections: when a process receives a m'essage,
stamped with a later sending time, it sets its own clock ahead to a time at
least as great as the sending timestamp. We have implemented this both in
real time and in a more comprehensive post-processor for Xab.

NTI . __

DTiC QUALrTr 'NBPECTED 3

1 Introduction

When writing and debugging parallel programs, many programmers find it

useful to be able to view an event trace. a sequential listing of each communi-

cation event and the time it has occurred. Many useful tools. such as Xab [-I]
and ParaGraph [7], have been created to better visualize parallel program
traces.

One important property that we would like these traces to observe is the

preservation of causality; if event A could have caused event B. then event A\
must have happened at an earlier time than B. A message that does riot, obey

this property (it is received before it is sent) is called a tach yon. ('learly it is
very disconcerting to try to debug a parallel program that contains tachyons.

Of course, in "real life", causality cannot be violated. In a trace file of a
distributed parallel program, however, causality violations can appear. (Ilue

to poor clock granularity or poor clock synchronization. In this paper. we

establish that these causality violations do in fact occur. and discuss some
ways to eliminate them from trace files.

2 The Problem

As discussed above, one important property that a trace file should Ihave is

that the timestamps reported in a program trace preserve causality. We say
event A causally precedes event B (see [8]) if

"* Events A and B occur at the same process, and A occurs before B.

"* Event A sends a message received during event B, or

"• There is an event C such that A precedes C and C precedes B.

If event A causally precedes event B. then the "'rea.l time" at, which A occurred

must be earlier than the time at which B occurred. If the timiestamlps in Ile

program trace obey this commonsense property, then the program flow will
conform to our notions of causality, and flow graphs created by utilities such

as ParaGraph will not show messages travelling backwards in ti61e.

In order to determine if causality violations occurred, we ran a small

test program on approximately ten machines (including Sun l's and P'max's.

all running Mach) connected by Ethernet, here at. (Carnegie Mellon. "i'le

program was written using PVM version 3.1 (see [2.3. 6. 10]), and consisted
of a "master" process on one machine and a slave process on each of the
others. Every five minutes, the master process would awaken and do the
following for each slave:

1. Get the current time N1l.

2. Send a message to the slave.

3. Wait for a reply message.

4. Get the time M2 immediately after receiving the reply message.

5. Read the values Si and S2 from the reply, where SI is the time at the
slave just after receiving the original message and S2 is the time at the
slave just before sending its reply.

6. Calculate the values (Si-Mi) and (M2-$2); if either of these is negative.
we have found a tachyon.

The slave programs were very simple:

1. Wait for a message from the master; upon receipt. get the tirme SI.

2. Get the time S2, and write SI and S2 in a reply message.

3. Send the reply to the master, and go back to step 1.

The time differences for messages from the master to the slaves during
one trial are shown in figure L. The x-axis represented the iteration num-
ber; as mentioned above, the iterations were five minutes apart.. The v-axis
represents the time difference measured in microseconds. Each point on t he
graph represents the time difference (SI-Nil) for one message from the ias-
ter to a slave process. (The messages from the slaves to the master are not
represented.) For several iterations, the time differences were very large (,1p
to 1.9 * 106 microseconds), and were omitted from the graph.

Tachyons turned out to be more common than we had expect.ed. "We
observed two types of tachyons:

Fig. 1: Measured Message Travel Times
200000 1

0 time differences 0

00 ---
1 5granularity bound150000

- 100000
o 0a) o 0

50000 o 0 o

0 0

0 - 0 0 0 i ' 0 i 0

0 0 i0 @5 20 2,

..................... ..
0 0~0.2 ~ ' 00 00

0 0o 8 0s8
E- -50000 0 000 0

8 *08@ o0
00

-100000 0 00

-150000 -I
0 5 10 15 20 25 30

Iteration Nuaber (5 minute intervals)

Figure 1: Measured Message Travel Times. Each point, represents tlie (liffer-
ence between send and receive times for one message.

3

"* Tachyons which appear due to poor clock granularity. If the system
clock only changes every 15 milliseconds. for example. and a message
travels more quickly than that, then the difference between the times
observed at the sender and receiver will be essentially meaningless.
(We measured the clock granularities on the machines involved: of]
the pmaxes it was between 15 and 16 milliseconds. and on the sn'.Fs
between 9 and 10 milliseconds.)

" Tachvons which are due to poor clock synchronization. If lie senld-
ing machine's clock is sufficiently far ahead of the receiver's, then the
measured time difference between sending and receipt will be negative.

In figure 1, the lower horizontal line marks a bound on the clock granularity
(16 milliseconds): thus any points which appear below the line are due to
poor clock synchronization, and those between the two horizontal lines (I le
upper one is y=0) may be due to clock granularity as well.

3 Preserving Causality

An obvious answer to the problem of tachvons is simply to synchronize the
clocks of the processes at the beginning of a computation. This will not
always be possible, however. Often the person running the parallel program
will not be the exclusive owner or user of the machine, and may not be
authorized to interfere with the svstem clocks. More importantly. I houughi.
this solution makes the assumption that all clocks will run at the same rate
throughout the life of the computation. which is not necessarily true. From
the drift observed during our experiment (see Fig. l), we can see that. 1v
clock rates vary over time.

Lamport [8] proposed "logical clocks", a simple solution to the prol)lem
of timestamping events to preserve causality. Each process keeps a counter.
which it increments by I after each communication event. W\henever a pro-

cess sends a message, it timestamps the message with its current clock val'e.
When a process receives a message. it sets its clock to the maximuni of its
current clock and the message's timestamp. This insures that if A causally
precedes B, then the tirnestampof B will be at least as great as the t iniestailjp
of A.

Of course, this comes at the price of eliminating all information about
the real time intervals between events. One way we have tried to solve this
problem is the following: Have every process keep track of a real time (i.e..
the system clock) and an "offset'. initially 0. The parallel program will view
its "total time" as being equal to the real time + the offset. WVhenever a
message is sent, it will be timestamped with the total time at the sender.
When a message is received. the recipient checks to see if its total time
is at least as great as the message's t.iniestanip: if not. it will increase its
offset so it is. Thus, just as with Lamport's logical tirme. cawsality will
be preserved; in addition, the difference in timestamp between two events
will be a reasonable approximation to the actual time difference. if riot too
many Lamport-style clock corrections intervene. Using this basic idea. we
implemented two different methods for eliminating tachvons in Xab.

3.1 Approach 1: Real-time Logical Timestamps

The first method we used to insert (extended) logical t inmestan•pS into trace
files was to modify Xab directly. The Xab instrumentation was changed so
that before sending a message. a timestamp is inserted: when the miessage

is received, the timestamp is immediately checked and the local clock oftset
changed if necessary.

Unfortunately, there are several pvm calls (such as pvnrbarrier() and
pvm-pstatus()) that communicate information at a lower level. so that I a,'rvn *s
can be introduced but there are no messages visible at the Nab level. Wit horn
seriously interfering with the program execution by inserting ext ra mitessages.
the only way to enforce causality in these cases would be, to inodify pvn' di-
rectly. The PVM developers are currently integrating Xab-stvle events inio
PVM version :3.

3.2 Approach 2: An Xab Postprocessor

Our second approach was to post-process the Xab trace. Of course. t his will
not help during realtime monitoring, but is a mitch more general itet 1hod. it
that it can be extended to handle pvyrebarrier(). pvmpstatls(). evtc.

The basic algorithm is to rise the event trace to constriuct the comntii-
cation flow DAG (Directed Acyclic Graph) for the prograin, a graphit where
a node corresponds to each event and an edge C(orre1sJtSMs to tIre flow 1 of

information between two events. For example, there is an edge from any
event to the next event at the same process, an edge between each send and
its corresponding receive, an edge between a barrier and each corresponding
ba.rrier-done, etc. Once the DAG is constructed, it is traversed in a topolog-
ical order, and each node's timestamp is corrected to be at least as great as
the maximum timestamp of any of its prede-cessors. The complexity of this
computation is O(E*P) in the worst case, where E is the number of events
and P is the number of processes.

Note that this DAG exactly captures the notion of causality, and since
each node has a timestamp guaranteed to be greater than any of its ancestors.
the corrected timestamps provided by this algorithm will be the same as those
provided by our first approach. Thus the processed tracefile can be replayed
throug", Xab and a causality-preserving event ordering will be observed.

4 Observations

In order to measure the distortion produced by our corrected timestanips. we
ran the experiment in section 2 calculating the value that our offsets wotild
take on during the computation. Figuire 2 shows the progression ol the values
of the clock offsets over time; note that these values can be viewed as tle
maximum distortion of the time difference that may be observed between I wo
events. Over the course of a computation, these seem to get rather large. Up)
to 2.5 seconds over the course of a 165 minute run in this case. This is to
be expected, since a single erroneous clock will affect the offsels of' all tie
processes to which it communicates.

5 Discussion and Future Work

We have observed that due to poor clock synchronization (combined with
clock drift) and relatively large clock granularity, tachyons do :nldeel occ'',r
on a local ethernet, and have explored one general method for correcting
the event times in a trace file to eliminate them. We have shown I hat it. is
possible to eliminate tachyons, though this comes with the cost of intrnoducing
some distortion when trying to tigure out the time that, has actu1ally passed
between two events.

6

Fig. : 'lock Dffset Pr2'resscrn
25e÷06 I T

-e-06

.• 15e-061-.06

500000
ooo

0o
0 5 l0 i5 20 -_S

Ittration (5 minute interval,)

Figure 2: Offset Progression Over T1ime. adich point represe•ts Ie cloc k
offset at. one machine during one iterat ion.

There are several further directions to pursue in this area. For example.
it seems as if our post-processor could provide a range of possible times fCr
each event, rather than just a (relatively arbitrary) causality-preserv ing time
as it does now. In addition, it might be possible to provide additional useful
information at runtime, such as detecting race conditions, perhaps using an
algorithm like that in [9]. Finally, the user might be interested in seeing the
DAG itself, which could be an additional usefu! debugging tool.

6 Availablility

Xab and the post-processor (xab-post) described in section 3.2 ciall he ob-
tained from netlib. Simply send email to netlibgornl .gov with the message
"send index from pvm/xab". An index of the software and reporls on Xabl

will be returned to you with instructions on how to obtain the various pieces.

References

[1] Gregory R. Andrews. Paradigms for process interaction in dist-ributod
programs. ACM Computing turvmys, 23(1):49-90, March 1991.

[2] A. Beguelin, .J. Dongarra, G. A. Geist, and V. S. Sinderain. Visualiza-
tion and debugging in a heterogeneous environment. IEEE Co, tpuI/Ar.
June 199.3. To appear.

[3] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek, aid V. S. Suil-
deram. A users' guide to PVM parallel virt,,al machine. 'l'eclihiiial
Report ORNL/TM-11826, Oak Ridge National Laboratory, Julv 1991.

[4] Adam Beguelin. Xab: A tool for monitoring pvyr progranis. In W Iork'shop

on Heterogeneous Processing, pages 92-97, Los Alanitos. ('alit'ornia.
April 1993. IEEE Computer Society Press.

[5] C..J. Fidge. Partial orders for parallel debugging. In SI;PL. A/SI(;OI.S
Workshop on Parallel and Distributed Detugging, pages 1S3--19.1, May
1988.

[6] A. Geist. A. Beguelin. .J. .. Dongarra. W. .Jiang, R. Manchek. and V S.
Sunderam. PVNI 3 user's guide and reference manual. Technical Report
ORNL/TM-12167, Oak Ridge National Laboratory. May 1993.

(71 M. Heath and .1. Etheridge. Visiializing the performance of parallel
programs. IEEE Softluarc. 8(5):29-3!9. September 1991.

[S] Leslie Lamport. Time. clocks, and I lhe ordering of events in a (list ri bted
s-'stenm. (Con? n u ii'atiors 01 th(.(.11. 21(7):5.58-56-5..lulv 1978.

[9] Robert H.B. Netzer and Barton P. Miller. Optimal tracing and replay
for deugging message-passing parallel programs. In Supfrrompulin. ".92.
pages 502-511. IEEE Computing Society Press. 1992.

[101 V. S. Sinrideram. P\'I :.A framework for parallel distributed computiiig.
('on currency: -Y' actir'fi an0d L[rHp ri(ncr. 2(1):315 -339. December 1990.

REPORT DOCUMENTATION PAGE oJ N 070"184F

PWMa oulooftroft etiia@ me" 60 m q ""we" I howv mar V•at 'mUm "mPN, IwMMLq ewt' 0 at-a 0%M
gofw"r aoeadwo"sNmg"w"tfwO" Om@imm ther &a ma of IW^

omm1!.• t~k•i A •Jk~~. W ROW to W mmW. so 010"wgme .a" *1013a.12I
Oas~k.Sii 134. 64~ VA3333.461.aii Uw~,@ Ma 4"mWua aii Lo w kipa.n Raua~a om (Sj iQ070"IU. WaaeM"a. 0C 10SO3.

"LA4CY USE ONLY (L'awbI' i.2. REPORT OATE I REPORT TYPE AND OATES COVERED
1 GJYUAOL(Lo 7JUNE 1993 ____________

4. AMO Sj3TTT S. FUNOING NUMBERS

Causality-Preserving Timestamps in YADA972-90-C-0035
Distributed Programs

L AUTHOF(S)

Adams Beguelin, Erik Seligman

7. PWWS•GM ORGANIZATrON NAME(S) AND AOORESS(ES) B. PERFORMING ORGANIZATION

REPORT NUMBER

School of Computer Science
Carnegie Mellon University CMU-CS-93-167
5000 Forbes Avenue
Pittsburgh, PA 15213-3891

9. SPONSORING/MONITORING AGENCY NAME(S) AND AODRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBERDARPA!/ I STO

DARPA / CMO

11. SUPPLEMENTARY NOTES

See Attachement.

12a. OISTRIBUTION•IAVAILAUIUTY STATEMENT 12b. DISTRIBUTION -CODE

13. ABSTRACT (Mammum200warhe)

See attachment.

14. SUIUECT Tin" I&S. NUMBER OF PAGES
9

IL PICE COCK

17. SUOm" CLASSWICATI•O 14. SICURTY CASSIATION IIt. SECURTY CLASSIPEAATION 20. UANTATION Of ABSTRACT

am 7S41•l-gSSM0 Standard Poem 2" (Rv 2-69)
Pemu A9LU ~IM U. oM I

